Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3β , 5a, 15a-Trihydroxy-5-androsten-17one dihydrate

Wei Zhou,^a Guo-Hong Wang,^b Wei-Xiao Hu^a* and Chun-Nian Xia^a

^aCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou,310032, People's Republic of China, and ^bZhejiang Shou & Fu Chemical Co. Ltd., Lishui 321400, Zhejiang, People's Republic of China Correspondence e-mail: huyang@mail.hz.zj.cn

Received 17 October 2007; accepted 22 October 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.099; data-to-parameter ratio = 9.9.

In the steroid skeleton of the title compound, $C_{19}H_{28}O_4 \cdot 2H_2O$, ring *A* assumes a slightly twisted chair conformation, ring *C* adopts a regular chair conformation, ring *B* adopts a half-chair conformation and ring *D* has a somewhat twisted envelope conformation. The crystal packing exhibits an extensive threedimensional hydrogen-bonding network, formed by intermolecular $O-H \cdots O$ hydrogen bonds between the steroid and water molecules.

Related literature

For related literature, see: Romano *et al.* (2006); Muhn *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{l} C_{19}H_{28}O_4{\cdot}2H_2O\\ M_r = 356.45\\ Orthorhombic, P2_12_12_1\\ a = 6.0653 \ (8) \ \text{\AA}\\ b = 12.4906 \ (16) \ \text{\AA}\\ c = 25.472 \ (3) \ \text{\AA} \end{array}$

 $V = 1929.8 (4) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 296 (2) K $0.40 \times 0.30 \times 0.20 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1997) $T_{min} = 0.975, T_{max} = 0.983$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	
$wR(F^2) = 0.099$	
S = 1.03	
2539 reflections	
256 parameters	
7 restraints	

12301 measured reflections 2539 independent reflections 2289 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.20\ e\ \mathring{A}^{-3}\\ &\Delta\rho_{min}=-0.21\ e\ \mathring{A}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

	• • • •			
$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1 - H1X \cdots O6$	0.830 (18)	1.80 (2)	2.618 (3)	170 (3)
$O2 - H2X \cdots O3$	0.835 (16)	1.98 (2)	2.755 (2)	153 (3)
$O3 - H3X \cdot \cdot \cdot O5^{i}$	0.844 (17)	1.889 (18)	2.731 (2)	176 (3)
$O5-H5X\cdots O1^{ii}$	0.852 (18)	1.95 (2)	2.778 (2)	165 (3)
$O5-H5Y\cdots O1^{iii}$	0.841 (18)	1.867 (19)	2.702 (2)	172 (3)
$O6-H6X\cdots O5^{iv}$	0.84 (2)	1.92 (2)	2.747 (3)	168 (5)
$O6-H6Y\cdots O4^{v}$	0.799 (19)	1.99 (2)	2.787 (3)	174 (5)

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x - 1, y, z; (iii) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, -z + 2; (iv) $x + \frac{3}{2}$, $-y + \frac{3}{2}$, -z + 2; (v) -x + 2, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

We are indebted to the Science and Technology Bureau of Zhejiang Province for financial support (grant No. 2005 C23022) and to Mr Pan for the kind gift of the precursor compound.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2322).

References

- Bruker (1997). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wiscosin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wiscosin, USA.
- Muhn, P., Fuhrmann, U., Fritzemeier, K. H., Krattenmacher, R. & Schillinger, E. (1995). Ann. NY Acad. Sci. 761, 311–335.
- Romano, A., Romano, D., Ragg, E., Costantino, F., Lenna, R., Gandolfi, R. & Molinari, F. (2006). *Steroids*, **71**, 429–434.
- Sheldrick, G. M. (1997). SADABS, SHELXL97 and SHELXS97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o4445 [doi:10.1107/S1600536807052336]

3β , 5α , 15α -Trihydroxy-5-androsten-17-one dihydrate

W. Zhou, G.-H. Wang, W.-X. Hu and C.-N. Xia

Comment

Drospirenone is a new contraceptive drug with the special antimineralocorticoid and antiandrogenic properties (Muhn *et al.*, 1995). The title compound, (I), as a key starting material for the synthesis of drospirenone, was obtained by biotransformation with Colletotrichum lini from dehydroepiandrosterone (DHEA) (Romano *et al.*, 2006). We report here the crystal structure of (I).

In (I) (Fig. 1), ring A assumes a slightly twisty chair conformation and ring C takes a regular chair conformation. In ring B, atoms C8 and C9 deviate at 0.242 and -0.503 Å from the mean plane C5—C7/C10, respectively, thus ring B takes a half-chair conformation. Ring D has a somewhat twisty envelope conformation: atoms C13, C15, C16 and C17 are nearly coplanar and atom C14 deviates from their mean plane at 0.625 Å.

In the crystal (Fig. 2), the crystalline water molecules involved in the formation of hydrogen bonding. The intermolecular and intramolecular O—H…O hydrogen bonding are found in the crystal lattice (Table 1).

Experimental

The title compound was obtained by biotransformation with Colletotrichum lini from dehydroepiandrosterone(DHEA) according to the literature method (Andrea *et al.*, 2006). Dehydroepiandrosterone(DHEA) was kindly offered by Mr. Pan, Jiubang Chemistry Corp. Ltd., Shanghai, China. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from the mixture of tetrahydrofuran and H_2O (9:1).

Refinement

C-bound H atoms were placed in calculated positions (C—H 0.96–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5$ Ueq of the parent atom. The hydroxy H atoms were located in a difference map and refined isotropically with restaint O—H=0.84 (2) Å. The H atoms in H₂O molecules were located in a difference map and refined isotropically with restaints O—H= 0.83 (2) Å. Due to the absence of any significant anomalous scatterers in the compound, 1937 Friedel pairs were merged before the final refinement.

Figures

Fig. 1. The structure of (I) with the atomic numbering and 30% probability displacement ellipsoids.

Fig. 2. Packing diagram of (I), viewed along the *a* axis, showing hydrogen bonds as dashed lines. For clarity, H atoms have been omitted except for those involved in hydrogen bonding.

3β,5α,15α-Trihydroxy-5-androsten-17-one dihydrate

Crystal data	
$C_{19}H_{28}O_4 \cdot 2H_2O$	$F_{000} = 776$
$M_r = 356.45$	$D_{\rm x} = 1.227 \ {\rm Mg \ m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 4751 reflections
a = 6.0653 (8) Å	$\theta = 2.3 - 25.8^{\circ}$
<i>b</i> = 12.4906 (16) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 25.472 (3) Å	T = 296 (2) K
$V = 1929.8 (4) \text{ Å}^3$	Block, colourless
Z = 4	$0.40 \times 0.30 \times 0.20 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	2539 independent reflections
Radiation source: fine-focus sealed tube	2289 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
T = 296(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
φ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)	$h = -7 \rightarrow 7$
$T_{\min} = 0.975, \ T_{\max} = 0.983$	$k = -16 \rightarrow 12$
12301 measured reflections	$l = -33 \rightarrow 32$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.099$	$w = 1/[\sigma^2(F_0^2) + (0.0532P)^2 + 0.2939P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{max} < 0.001$
2539 reflections	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
256 parameters	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
7 restraints	Extinction correction: SHELXL97 (Sheldrick, 1997), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}

Primary atom site location: structure-invariant direct Extinction coefficient: 0.015 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.8995 (3)	0.83766 (13)	0.94606 (5)	0.0479 (4)
H1X	0.994 (5)	0.884 (2)	0.9523 (11)	0.083 (11)*
O2	1.0556 (3)	0.96442 (12)	0.69625 (6)	0.0464 (4)
H2X	1.048 (5)	0.9884 (19)	0.6657 (7)	0.060 (8)*
O3	0.8912 (4)	1.01700 (14)	0.59879 (6)	0.0725 (6)
H3X	0.904 (5)	1.054 (2)	0.5714 (8)	0.076 (9)*
O4	0.7005 (4)	0.68704 (14)	0.53143 (6)	0.0679 (5)
O5	0.0560 (3)	0.64593 (14)	0.98689 (6)	0.0547 (4)
H5X	0.027 (6)	0.7099 (16)	0.9776 (11)	0.078 (9)*
H5Y	0.166 (4)	0.657 (2)	1.0062 (10)	0.076 (10)*
O6	1.2334 (5)	0.9667 (2)	0.96135 (14)	0.1160 (11)
H6X	1.325 (7)	0.937 (4)	0.9813 (17)	0.174*
H6Y	1.258 (8)	1.0295 (17)	0.9615 (16)	0.129 (16)*
C1	0.7195 (4)	0.71106 (15)	0.81999 (8)	0.0434 (5)
H1A	0.6202	0.6519	0.8131	0.052*
H1B	0.8654	0.6896	0.8085	0.052*
C2	0.7263 (4)	0.73072 (17)	0.87909 (8)	0.0457 (5)
H2A	0.5794	0.7468	0.8919	0.055*
H2B	0.7791	0.6671	0.8970	0.055*
C3	0.8782 (3)	0.82337 (16)	0.89005 (7)	0.0401 (4)
Н3	1.0238	0.8074	0.8753	0.048*
C4	0.7891 (4)	0.92309 (16)	0.86418 (7)	0.0437 (5)
H4A	0.8881	0.9825	0.8710	0.052*
H4B	0.6467	0.9405	0.8793	0.052*
C5	0.7647 (3)	0.90839 (14)	0.80534 (7)	0.0353 (4)
C6	0.8447 (4)	0.98109 (14)	0.77263 (7)	0.0395 (4)
H6	0.9146	1.0401	0.7874	0.047*
C7	0.8322 (3)	0.97645 (14)	0.71421 (7)	0.0370 (4)
H7	0.7756	1.0451	0.7014	0.044*
C8	0.6798 (3)	0.88707 (14)	0.69432 (7)	0.0338 (4)
H8	0.5267	0.9116	0.6970	0.041*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

С9	0.7080 (3)	0.78640 (13)	0.72853 (7)	0.0332 (4)
Н9	0.8660	0.7701	0.7284	0.040*
C10	0.6452 (3)	0.80810 (14)	0.78689 (7)	0.0348 (4)
C11	0.5923 (4)	0.68699 (16)	0.70619 (8)	0.0505 (5)
H11A	0.6357	0.6250	0.7266	0.061*
H11B	0.4342	0.6957	0.7101	0.061*
C12	0.6449 (4)	0.66589 (17)	0.64823 (8)	0.0512 (6)
H12A	0.7997	0.6478	0.6445	0.061*
H12B	0.5582	0.6058	0.6357	0.061*
C13	0.5931 (4)	0.76454 (16)	0.61572 (8)	0.0415 (5)
C14	0.7281 (3)	0.85949 (15)	0.63714 (7)	0.0349 (4)
H14	0.8819	0.8354	0.6367	0.042*
C15	0.7121 (4)	0.94462 (17)	0.59409 (8)	0.0465 (5)
H15	0.5715	0.9830	0.5965	0.056*
C16	0.7217 (5)	0.87818 (19)	0.54340 (8)	0.0547 (6)
H16A	0.6131	0.9035	0.5184	0.066*
H16B	0.8667	0.8831	0.5275	0.066*
C17	0.6729 (4)	0.76470 (18)	0.55922 (8)	0.0470 (5)
C18	0.3422 (4)	0.7862 (2)	0.61283 (10)	0.0593 (6)
H18A	0.2878	0.8033	0.6472	0.089*
H18B	0.2683	0.7236	0.5999	0.089*
H18C	0.3149	0.8452	0.5896	0.089*
C19	0.3950 (4)	0.8263 (2)	0.79409 (9)	0.0526 (6)
H19A	0.3456	0.8802	0.7700	0.079*
H19B	0.3662	0.8492	0.8294	0.079*
H19C	0.3177	0.7606	0.7874	0.079*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0535 (9)	0.0549 (9)	0.0352 (7)	-0.0040 (8)	-0.0004 (7)	0.0027 (6)
02	0.0432 (8)	0.0525 (8)	0.0436 (7)	-0.0128 (7)	-0.0001 (7)	0.0049 (7)
03	0.1036 (16)	0.0654 (10)	0.0484 (9)	-0.0366 (11)	-0.0181 (10)	0.0222 (8)
04	0.0860 (14)	0.0634 (10)	0.0543 (9)	0.0029 (11)	0.0013 (10)	-0.0193 (8)
05	0.0672 (12)	0.0499 (9)	0.0471 (8)	0.0059 (9)	-0.0137 (8)	-0.0068 (7)
06	0.0978 (19)	0.0640 (14)	0.186 (3)	-0.0229 (14)	-0.069 (2)	0.0263 (16)
C1	0.0507 (12)	0.0330 (9)	0.0465 (10)	-0.0046 (9)	-0.0029 (10)	0.0049 (8)
C2	0.0508 (12)	0.0432 (11)	0.0430 (10)	-0.0027 (10)	-0.0013 (10)	0.0105 (8)
C3	0.0392 (10)	0.0455 (10)	0.0355 (9)	0.0018 (9)	0.0035 (8)	0.0009 (8)
C4	0.0549 (12)	0.0363 (9)	0.0399 (9)	0.0032 (9)	0.0030 (10)	-0.0026 (8)
C5	0.0380 (10)	0.0296 (8)	0.0383 (8)	0.0062 (8)	0.0009 (8)	-0.0011 (7)
C6	0.0502 (11)	0.0277 (8)	0.0408 (9)	-0.0020 (8)	-0.0053 (9)	-0.0021 (7)
C7	0.0437 (10)	0.0253 (8)	0.0420 (9)	-0.0008 (8)	-0.0021 (8)	0.0047 (7)
C8	0.0306 (9)	0.0316 (8)	0.0390 (8)	0.0019 (8)	-0.0012 (8)	0.0002 (7)
С9	0.0312 (9)	0.0295 (8)	0.0388 (9)	-0.0017 (7)	0.0011 (7)	0.0008 (7)
C10	0.0314 (9)	0.0331 (9)	0.0399 (9)	0.0001 (7)	0.0023 (8)	0.0030 (7)
C11	0.0635 (15)	0.0381 (10)	0.0498 (11)	-0.0165 (11)	0.0010 (11)	-0.0010 (9)
C12	0.0637 (15)	0.0365 (10)	0.0532 (11)	-0.0110 (10)	-0.0012 (11)	-0.0089 (9)

C13	0.0363 (10)	0.0434 (10)	0.0446 (10)	-0.0041 (9)	-0.0019 (9)	-0.0080 (8)
C14	0.0322 (9)	0.0351 (9)	0.0374 (8)	-0.0001 (8)	-0.0017 (8)	0.0005 (7)
C15	0.0548 (13)	0.0439 (11)	0.0409 (10)	-0.0010 (10)	-0.0081 (10)	0.0043 (8)
C16	0.0642 (15)	0.0610 (13)	0.0389 (10)	0.0004 (13)	-0.0021 (11)	-0.0008 (10)
C17	0.0408 (11)	0.0556 (12)	0.0447 (10)	0.0025 (10)	-0.0063 (9)	-0.0101 (9)
C18	0.0360 (11)	0.0793 (17)	0.0624 (13)	-0.0065 (12)	-0.0042 (10)	-0.0115 (13)
C19	0.0328 (10)	0.0746 (15)	0.0504 (12)	-0.0008 (11)	0.0051 (9)	0.0034 (11)
Geometric paran	neters (Å, °)					
O1—C3		1.443 (2)	C8—	-C14	1.52	5 (2)
O1—H1X		0.830 (18)	C8—	-C9	1.53	9 (2)
O2—C7		1.438 (3)	C8—	-H8	0.98	00
O2—H2X		0.835 (16)	С9—	-C11	1.53	6 (3)
O3—C15		1.418 (3)	С9—	-C10	1.55	8 (2)
O3—H3X		0.844 (17)	С9—	-H9	0.98	00
O4—C17		1.212 (3)	C10-	C19	1.54	6 (3)
O5—H5X		0.852 (18)	C11-	C12	1.53	3 (3)
O5—H5Y		0.841 (18)	C11-	-H11A	0.97	00
O6—H6X		0.84 (2)	C11-	-H11B	0.97	00
O6—H6Y		0.799 (19)	C12-	C13	1.51	8 (3)
C1—C2		1.526 (3)	C12-	-H12A	0.97	00
C1-C10		1.544 (3)	C12-	-H12B	0.97	00
C1—H1A		0.9700	C13-	C17	1.51	8 (3)
C1—H1B		0.9700	C13-	C14	1.54	1 (3)
C2—C3		1.505 (3)	C13-	C18	1.54	7 (3)
C2—H2A		0.9700	C14-	C15	1.53	1 (3)
C2—H2B		0.9700	C14-	-H14	0.98	00
C3—C4		1.509 (3)	C15-	C16	1.53	6 (3)
С3—Н3		0.9800	C15-	-H15	0.98	00
C4—C5		1.517 (3)	C16-	C17	1.50	3 (3)
C4—H4A		0.9700	C16-	-H16A	0.97	00
C4—H4B		0.9700	C16-	-H16B	0.97	00
C5—C6		1.324 (3)	C18-	-H18A	0.95	99
C5-C10		1.521 (3)	C18-	-H18B	0.95	99
С6—С7		1.491 (2)	C18-	-H18C	0.95	99
С6—Н6		0.9300	C19–	-H19A	0.95	99
С7—С8		1.536 (3)	C19-	-H19B	0.95	99
С7—Н7		0.9800	C19–	—Н19С	0.95	99
C3—O1—H1X		110 (2)	C1—	-C10C19	109.	70 (18)
C7—O2—H2X		102 (2)	С5—	-C10—C9	108.	76 (15)
С15—О3—НЗХ		111 (2)	C1—	-C10—C9	108.	25 (15)
H5X—O5—H5Y		100 (3)	C19-	—С10—С9	112.	24 (16)
H6X—O6—H6Y		108 (5)	C12-	С11С9	113.	61 (17)
C2-C1-C10		114.86 (16)	C12-	C11H11A	108.	8
С2—С1—Н1А		108.6	С9—	-C11—H11A	108.	8
C10-C1-H1A		108.6	C12-	C11H11B	108.	8
С2—С1—Н1В		108.6	С9—	-C11—H11B	108.	8
С10—С1—Н1В		108.6	H11A	А—С11—Н11В	107.	7

H1A—C1—H1B	107.5	C13—C12—C11	110.04 (17)
C3—C2—C1	108.85 (16)	C13—C12—H12A	109.7
C3—C2—H2A	109.9	C11—C12—H12A	109.7
C1—C2—H2A	109.9	C13—C12—H12B	109.7
C3—C2—H2B	109.9	C11—C12—H12B	109.7
C1—C2—H2B	109.9	H12A—C12—H12B	108.2
H2A—C2—H2B	108.3	C12—C13—C17	116.87 (18)
O1—C3—C2	109.45 (16)	C12—C13—C14	108.75 (16)
O1—C3—C4	111.19 (16)	C17—C13—C14	99.50 (17)
C2—C3—C4	109.54 (17)	C12-C13-C18	111.8 (2)
O1—C3—H3	108.9	C17—C13—C18	105.57 (19)
С2—С3—Н3	108.9	C14—C13—C18	113.90 (19)
С4—С3—Н3	108.9	C8—C14—C15	121.00 (16)
C3—C4—C5	111.50 (15)	C8—C14—C13	114.19 (16)
C3—C4—H4A	109.3	C15—C14—C13	104.31 (15)
C5—C4—H4A	109.3	C8—C14—H14	105.3
C3—C4—H4B	109.3	C15—C14—H14	105.3
C5—C4—H4B	109.3	C13—C14—H14	105.3
H4A—C4—H4B	108.0	O3—C15—C14	109.50 (17)
C6—C5—C4	120.17 (17)	O3—C15—C16	112.7 (2)
C6—C5—C10	123.01 (17)	C14—C15—C16	102.98 (17)
C4—C5—C10	116.82 (16)	O3—C15—H15	110.5
C5—C6—C7	125.63 (18)	C14—C15—H15	110.5
С5—С6—Н6	117.2	C16—C15—H15	110.5
С7—С6—Н6	117.2	C17—C16—C15	106.06 (17)
O2—C7—C6	105.89 (17)	C17—C16—H16A	110.5
O2—C7—C8	112.73 (15)	C15—C16—H16A	110.5
C6—C7—C8	112.84 (16)	C17—C16—H16B	110.5
O2—C7—H7	108.4	C15—C16—H16B	110.5
С6—С7—Н7	108.4	H16A—C16—H16B	108.7
С8—С7—Н7	108.4	O4—C17—C16	124.8 (2)
C14—C8—C7	111.32 (15)	O4—C17—C13	126.6 (2)
C14—C8—C9	109.55 (14)	C16—C17—C13	108.55 (17)
C7—C8—C9	109.88 (14)	C13—C18—H18A	109.5
С14—С8—Н8	108.7	C13—C18—H18B	109.5
С7—С8—Н8	108.7	H18A—C18—H18B	109.5
С9—С8—Н8	108.7	C13—C18—H18C	109.5
	113.58 (15)	H18A-C18-H18C	109.5
	112.49 (15)	HI8B—CI8—HI8C	109.5
C8—C9—C10	111.77 (14)	C10—C19—H19A	109.5
C11—C9—H9	106.1	С10—С19—Н19В	109.5
С8—С9—Н9	106.1	H19A—C19—H19B	109.5
C10-C9-H9	106.1	С10—С19—Н19С	109.5
C_{2}	109.81 (13)	ПТУА—СТУ—НТУС 11100 СТО 110С	109.5
0.5	100.07 (17)		109.5
C10—C1—C2—C3	-57.6 (3)	C11—C9—C10—C19	-59.7 (2)
C1—C2—C3—O1	-175.65 (17)	C8—C9—C10—C19	69.4 (2)
C1—C2—C3—C4	62.2 (2)	C8—C9—C11—C12	49.8 (3)
01—C3—C4—C5	-179.56 (18)	C10—C9—C11—C12	178.05 (18)

C2—C3—C4—C5	-58.5 (2)	C9—C11—C12—C13	-54.7 (3)
C3—C4—C5—C6	-130.8 (2)	C11—C12—C13—C17	169.47 (19)
C3—C4—C5—C10	49.5 (3)	C11-C12-C13-C14	57.9 (2)
C4—C5—C6—C7	179.9 (2)	C11—C12—C13—C18	-68.7 (2)
C10—C5—C6—C7	-0.3 (3)	C7—C8—C14—C15	-58.5 (2)
C5—C6—C7—O2	-113.7 (2)	C9—C8—C14—C15	179.81 (17)
C5—C6—C7—C8	10.1 (3)	C7—C8—C14—C13	175.67 (16)
O2—C7—C8—C14	-40.9 (2)	C9—C8—C14—C13	53.9 (2)
C6—C7—C8—C14	-160.83 (17)	C12—C13—C14—C8	-60.2 (2)
O2—C7—C8—C9	80.62 (19)	C17—C13—C14—C8	177.07 (16)
C6—C7—C8—C9	-39.3 (2)	C18—C13—C14—C8	65.2 (2)
C14—C8—C9—C11	-47.6 (2)	C12-C13-C14-C15	165.60 (17)
C7—C8—C9—C11	-170.19 (16)	C17—C13—C14—C15	42.9 (2)
C14—C8—C9—C10	-176.18 (15)	C18—C13—C14—C15	-69.0 (2)
C7—C8—C9—C10	61.2 (2)	C8—C14—C15—O3	72.0 (2)
C6—C5—C10—C1	138.4 (2)	C13—C14—C15—O3	-157.68 (18)
C4—C5—C10—C1	-41.8 (2)	C8-C14-C15-C16	-167.8 (2)
C6—C5—C10—C19	-101.9 (2)	C13-C14-C15-C16	-37.5 (2)
C4—C5—C10—C19	77.8 (2)	O3-C15-C16-C17	134.6 (2)
C6—C5—C10—C9	20.2 (3)	C14—C15—C16—C17	16.7 (3)
C4—C5—C10—C9	-160.08 (17)	C15—C16—C17—O4	-167.5 (2)
C2-C1-C10-C5	46.0 (2)	C15—C16—C17—C13	10.4 (3)
C2-C1-C10-C19	-72.6 (2)	C12—C13—C17—O4	28.5 (3)
C2-C1-C10-C9	164.65 (18)	C14—C13—C17—O4	145.3 (2)
C11—C9—C10—C5	-179.26 (16)	C18—C13—C17—O4	-96.5 (3)
C8—C9—C10—C5	-50.1 (2)	C12-C13-C17-C16	-149.3 (2)
C11-C9-C10-C1	61.5 (2)	C14—C13—C17—C16	-32.6 (2)
C8—C9—C10—C1	-169.36 (16)	C18—C13—C17—C16	85.6 (2)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
0.830 (18)	1.80 (2)	2.618 (3)	170 (3)
0.835 (16)	1.98 (2)	2.755 (2)	153 (3)
0.844 (17)	1.889 (18)	2.731 (2)	176 (3)
0.852 (18)	1.95 (2)	2.778 (2)	165 (3)
0.841 (18)	1.867 (19)	2.702 (2)	172 (3)
0.84 (2)	1.92 (2)	2.747 (3)	168 (5)
0.799 (19)	1.99 (2)	2.787 (3)	174 (5)
	D—H 0.830 (18) 0.835 (16) 0.844 (17) 0.852 (18) 0.841 (18) 0.84 (2) 0.799 (19)	D—H H···A 0.830 (18) 1.80 (2) 0.835 (16) 1.98 (2) 0.844 (17) 1.889 (18) 0.852 (18) 1.95 (2) 0.841 (18) 1.867 (19) 0.84 (2) 1.92 (2) 0.799 (19) 1.99 (2)	D—HH···A D ···A0.830 (18)1.80 (2)2.618 (3)0.835 (16)1.98 (2)2.755 (2)0.844 (17)1.889 (18)2.731 (2)0.852 (18)1.95 (2)2.778 (2)0.841 (18)1.867 (19)2.702 (2)0.84 (2)1.92 (2)2.747 (3)0.799 (19)1.99 (2)2.787 (3)

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) x-1, y, z; (iii) x-1/2, -y+3/2, -z+2; (iv) x+3/2, -y+3/2, -z+2; (v) -x+2, y+1/2, -z+3/2.

